Background: Parkinson’s disease is the second most common neurological disease, affecting balance, motor function, and activities of daily living. Virtual reality and motor imagery are two emerging approaches for the rehabilitation of patients with Parkinson’s disease. This study aimed to determine the combined effects of virtual reality and motor imagery techniques with routine physical therapy on the motor function components of individuals with Parkinson’s disease. Methods: The study was a prospective, two-arm, parallel-design randomized controlled trial. Forty-four patients with idiopathic Parkinson’s disease were randomly assigned to one of two groups. Virtual reality and motor imagery were given together with physical therapy in the experimental group (N: 20), while physical therapy treatment alone was given in the control group (N: 21). Both groups received allocated treatment for 12 weeks, 3 days a week, on alternate days. Motor function was assessed at baseline, six weeks, twelve weeks, and sixteen weeks after discontinuing treatment with the Unified Parkinson’s Disease Rating Scale part III. SPSS 24 was used to analyze the data. Results: Study results indicate that the experimental group showed significant improvements in the motor function components: tremor at rest at the 6th week (p = 0.028), 12th week (p = 0.05), and 16th week (p = 0.001), rigidity at the 6th week (p = 0.03), 12th week (p = 0.000), and 16th week (p = 0.001), posture at the 12th week (p = 0.005) and 16th week (p = 0.004), and gait at the 6th week with a p-value of (p = 0.034). Conclusions: This study demonstrated that virtual reality and motor imagery training in combination with routine physical therapy can significantly improve resting tremors, rigidity, posture, gait, and body bradykinesia in individuals with PD in comparison to patients receiving only routine physical therapy.