c Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) frequently causes skin and soft tissue infections, including impetigo, cellulitis, folliculitis, and infected wounds and ulcers. Uncomplicated CA-MRSA skin infections are typically managed in an outpatient setting with oral and topical antibiotics and/or incision and drainage, whereas complicated skin infections often require hospitalization, intravenous antibiotics, and sometimes surgery. The aim of this study was to develop a mouse model of CA-MRSA wound infection to compare the efficacy of commonly used systemic and topical antibiotics. A bioluminescent USA300 CA-MRSA strain was inoculated into full-thickness scalpel wounds on the backs of mice and digital photography/image analysis and in vivo bioluminescence imaging were used to measure wound healing and the bacterial burden. Subcutaneous vancomycin, daptomycin, and linezolid similarly reduced the lesion sizes and bacterial burden. Oral linezolid, clindamycin, and doxycycline all decreased the lesion sizes and bacterial burden. Oral trimethoprim-sulfamethoxazole decreased the bacterial burden but did not decrease the lesion size. Topical mupirocin and retapamulin ointments both reduced the bacterial burden. However, the petrolatum vehicle ointment for retapamulin, but not the polyethylene glycol vehicle ointment for mupirocin, promoted wound healing and initially increased the bacterial burden. Finally, in type 2 diabetic mice, subcutaneous linezolid and daptomycin had the most rapid therapeutic effect compared with vancomycin. Taken together, this mouse model of CA-MRSA wound infection, which utilizes in vivo bioluminescence imaging to monitor the bacterial burden, represents an alternative method to evaluate the preclinical in vivo efficacy of systemic and topical antimicrobial agents. C ommunity-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) skin and soft tissue infections (SSTIs), such as impetigo, folliculitis, cellulitis, and infected wounds and ulcers, have been increasing for more than a decade and are creating a serious public health concern (1, 2). In particular, outpatient and emergency room visits for SSTIs have been estimated to result in 11.6 to 14.2 million ambulatory care visits per year in the United States (3, 4). In 2004 and 2008, CA-MRSA was identified as the most common cause (59%) of all SSTIs presenting to emergency rooms across the United States (5, 6). In these and other studies, the USA300 clone has been isolated in up to 90% of all CA-MRSA SSTIs in the United States (5-8). USA300 causes severe and necrotic SSTIs and often causes infections in otherwise healthy individuals without any known risk factors for infection (1, 2, 9).Uncomplicated CA-MRSA SSTIs, such as impetigo, infected abrasions, and folliculitis/furunculosis can be managed in an outpatient setting with oral antibiotics and/or incision and drainage (10-12). Typical oral antibiotic regimens used for CA-MRSA infections include trimethoprim-sulfamethoxazole (TMP/SMX), a tetracycline...