More and more evidence suggests the oncogenic function of overexpressed CDC28 protein kinase regulatory subunit 2 (CKS2) in various human cancers. However, CKS2 has rarely been studied in cervical cancer. Herein, taking advantage of massive genetics data from multicenter RNA-seq and microarrays, we were the first group to perform tissue microarrays for CKS2 in cervical cancer. We were also the first to evaluate the clinical significance of CKS2 with large samples (980 cervical cancer cases and 422 noncancer cases). We further excavated the mechanism of the tumor-promoting activities of CKS2 in cervical cancer through analysis of genetic mutation profiles, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) significant enrichment of genes coexpressed with CKS2. According to the results, expression data from multilevels unanimously supported the overexpression of CKS2 in cervical cancer. Patients with cervical cancer in stage II from inhouse microarrays had significantly higher expression of CKS2, and CKS2 overexpression had an adverse impact on the disease-free survival status of cervical cancer patients in GSE44001. Both mutation types of mRNA high and mRNA low appeared in cervical cancer cases from the TCGA Firehose project. Gene coexpressed with CKS2 participated in pathways including the cell cycle, estrogen signaling pathway, and DNA replication. In summary, upregulated CKS2 is closely associated with the malignant clinical development of cervical cancer and might serve as a valuable therapeutic target in cervical cancer.