Slaughterhouse surveillance through post-mortem meat inspection provides an important mechanism for detecting bovine tuberculosis (bTB) infections in cattle herds in Great Britain (GB), complementary to the live animal skin test based programme. We explore patterns in the numbers of herd breakdowns detected through slaughterhouse surveillance and develop a Bayesian hierarchical regression model to assess the associations of animal-level factors with the odds of an infected animal being detected in the slaughterhouse, allowing us to highlight slaughterhouses that show atypical patterns of detection. The analyses demonstrate that the numbers and proportions of breakdowns detected in slaughterhouses increased in GB over the period of study (1998–2013). The odds of an animal being a slaughterhouse case was strongly associated with the region of the country that the animal spent most of its life, with animals living in high-frequency testing areas of England having on average 21 times the odds of detection compared to animals living in Scotland. There was also a strong effect of age, with animals slaughtered at > 60 months of age having 5.3 times the odds of detection compared to animals slaughtered between 0–18 months of age. Smaller effects were observed for cattle having spent time on farms with a history of bTB, quarter of the year that the animal was slaughtered, movement and test history. Over-and-above these risks, the odds of detection increased by a factor of 1.1 for each year of the study. After adjustment for these variables, there were additional variations in risk between slaughterhouses and breed. Our framework has been adopted into the routine annual surveillance reporting carried out by the Animal Plant Health Agency and may be used to target more detailed investigation of meat inspection practices.