1995
DOI: 10.1007/3-540-60298-4_235
|View full text |Cite
|
Sign up to set email alerts
|

Efficient attributed graph matching and its application to image analysis

Abstract: Graphs are a very powerful data structure for many tasks in image analysis. If both known models and unknown objects are represented by graphs, the detection or recognition problem becomes a problem of graph matching. In this paper, we first review different methods for graph matching. Then we introduce a new family of exact and errortolerant graph matching algorithms that have a number of interesting properties. The algorithms are particularly efficient if there is a large number of model graphs to be matched… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
13
0
1

Year Published

1996
1996
2014
2014

Publication Types

Select...
4
4
1

Relationship

0
9

Authors

Journals

citations
Cited by 36 publications
(14 citation statements)
references
References 19 publications
0
13
0
1
Order By: Relevance
“…These methods fall under structural approaches. They are then represented as Attributed Relational Graphs (ARG) [Bunke and Messmer, 1995;Conte et al, 2004], Region Adjacency Graphs (RAG) [Lladós et al, 2001], constraint networks [Ah-Soon and Tombre, 2001] as well as deformable templates [Valveny and Martí, 2003]. Their common drawback comes from error-prone raster-to-vector conversion.…”
Section: State-of-the-art 121 Symbol Representationsmentioning
confidence: 99%
“…These methods fall under structural approaches. They are then represented as Attributed Relational Graphs (ARG) [Bunke and Messmer, 1995;Conte et al, 2004], Region Adjacency Graphs (RAG) [Lladós et al, 2001], constraint networks [Ah-Soon and Tombre, 2001] as well as deformable templates [Valveny and Martí, 2003]. Their common drawback comes from error-prone raster-to-vector conversion.…”
Section: State-of-the-art 121 Symbol Representationsmentioning
confidence: 99%
“…Ein zu klassifizierender Graph H besitzt das Merkmal P , wenn P mit einer geeigneten Abbildung f der Variablen, die die Knoten des zum Produkt gehörigen Graphen repräsentieren, als Teilstruktur in H enthalten ist. Wir wollen in dieser Arbeit eine Funktion f , die eine relationale Struktur in eine andere Struktur abbildet und mit den Relationen verträglich ist, allgemein als Homomorphismus bezeichnen ( [45] Garey and Johnson haben in [13] gezeigt, daß die Subgraphisomorphie, d. h. die Entscheidung der Einbettbarkeit durch Monomorphismen, und die Entscheidung der θ-Subsumtion NP-vollständige Probleme sind (s. auch [19,24,3]). Die Senkung dieser durch Morphismen entstehenden Berechnungskomplexität ist also einer der entscheidenden Punkte beim relationalen Lernen.…”
Section: Produktdarstellungunclassified
“…After detecting their presence, the impression image is decomposed into a set of primitives. To obtain a structural representation of these primitives, an attributed relational graph(ARG) [51,52] is built. An ARG is a directed graph that can be represented as a 3-tuple (V, E, A) where V is the set of vertices, also called nodes, E is the set of relations (edges) and A is the set of attributes.…”
Section: Graph Representationmentioning
confidence: 99%