2021
DOI: 10.1002/jsfa.11104
|View full text |Cite
|
Sign up to set email alerts
|

Efficient biorefinery of whole cassava for citrate production using Aspergillus niger mutated by atmospheric and room temperature plasma and enhanced co‐saccharification strategy

Abstract: BACKGROUND The non‐grain crop cassava has attracted intense attention in the biorefinery process. However, efficient biorefinery of whole cassava is faced with some challenges due to the existence of strain inhibition and refractory cellulose during the citrate production process. RESULTS Here, a novel breeding method – atmospheric and room temperature plasma (ARTP) – was applied for strain improvement of citrate‐producing strain Aspergillus niger from whole cassava. The citrate yield of the mutant obtained us… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 29 publications
(30 reference statements)
0
1
0
Order By: Relevance
“…The optimal exposure time (40 s) of ARTP treatment to strain PKU#Mn4 was comparable with that of the microalgae such as Crypthecodinium cohni [39], Spirulina platensis [19], Chlorella pyrenoidosa [43] and Spirulina platensis [44]. However, compared with fungi, e.g., Monascus purpureus LQ-6 [45] and Aspergillus niger [46], the strain PKU#Mn4 was much more sensitive to the exposure time. These reported differences in the treatment duration could be attributed to the differential biochemical features of the microalgal and fungal cell walls that act as a natural barrier against environmental pressures [47].…”
Section: Discussionmentioning
confidence: 84%
“…The optimal exposure time (40 s) of ARTP treatment to strain PKU#Mn4 was comparable with that of the microalgae such as Crypthecodinium cohni [39], Spirulina platensis [19], Chlorella pyrenoidosa [43] and Spirulina platensis [44]. However, compared with fungi, e.g., Monascus purpureus LQ-6 [45] and Aspergillus niger [46], the strain PKU#Mn4 was much more sensitive to the exposure time. These reported differences in the treatment duration could be attributed to the differential biochemical features of the microalgal and fungal cell walls that act as a natural barrier against environmental pressures [47].…”
Section: Discussionmentioning
confidence: 84%