Distance labeling approaches are widely adopted to speed up the online performance of shortest distance queries. The construction of the distance labeling, however, can be exhaustive especially on big graphs. For a major category of large graphs, small-world networks, the state-of-the-art approach is Pruned Landmark Labeling (PLL). PLL prunes distance labels based on a node order and directly constructs the pruned labels by performing breadth-first searches in the node order. The pruning technique, as well as the index construction, has a strong sequential nature which hinders PLL from being parallelized. It becomes an urgent issue on massive smallworld networks whose index can hardly be constructed by a single thread within a reasonable time. This paper scales distance labeling on small-world networks by proposing a Parallel Shortest-distance Labeling (PSL) scheme and further reducing the index size by exploiting graph and label properties. PSL insightfully converts the PLL's node-order dependency to a shortest-distance dependence, which leads to a propagation-based parallel labeling in D rounds where D denotes the diameter of the graph. Extensive experimental results verify our efficiency on billion-scale graphs and near-linear speedup in a multi-core environment.