The Internet of Things (IoT) aims to connect billions of smart objects to the Internet, which can bring a promising future to smart cities. These objects are expected to generate large amounts of data and send the data to the cloud for further processing, specially for knowledge discovery, in order that appropriate actions can be taken. However, in reality sensing all possible data items captured by a smart object and then sending the complete captured data to the cloud is less useful. Further, such an approach would also lead to resource wastage (e.g. network, storage, etc.). The Fog (Edge) computing paradigm has been proposed to counterpart the weakness by pushing processes of knowledge discovery using data analytics to the edges. However, edge devices have limited computational capabilities. Due to inherited strengths and weaknesses, neither Cloud computing nor Fog computing paradigm addresses these challenges alone. Therefore, both paradigms need to work together in order to build an sustainable IoT infrastructure for smart cities. In this paper, we review existing approaches that have been proposed to tackle the challenges in the Fog computing domain. Specifically, we describe several inspiring use case scenarios of Fog computing, identify ten key characteristics and common features of Fog computing, and compare more than 30 existing research efforts in this domain. Based on our review, we further identify several major functionalities that ideal Fog computing platforms should support and a number of open challenges towards implementing them, so as to shed light on future research directions on realizing Fog computing for building sustainable smart cities.
Fog computing is a new paradigm that extends the Cloud platform model by providing computing resources on the edges of a network. It can be described as a cloud-like platform having similar data, computation, storage and application services, but is fundamentally different in that it is decentralized. In addition, Fog systems are capable of processing large amounts of data locally, operate on-premise, are fully portable, and can be installed on heterogeneous hardware. These features make the Fog platform highly suitable for time and location-sensitive applications. For example, Internet of Things (IoT) devices are required to quickly process a large amount of data. This wide range of functionality driven applications intensifies many security issues regarding data, virtualization, segregation, network, malware and monitoring. This paper surveys existing literature on Fog computing applications to identify common security gaps. Similar technologies like Edge computing, Cloudlets and Micro-data centres have also been included to provide a holistic review process. The majority of Fog applications are motivated by the desire for functionality and end-user requirements, while the security aspects are often ignored or considered as an afterthought. This paper also determines the impact of those security issues and possible solutions, providing future security-relevant directions to those responsible for designing, developing, and maintaining Fog systems.
With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machineto-human and machine-to-machine communication with the physical world. IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, but several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article reviews the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.