Transmission electron microscopy (TEM) imaging has revolutionized modern materials science, nanotechnology, and structural biology. Its ability to provide information about materials' structure, composition, and properties at atomic-level resolution has enabled groundbreaking discoveries and the development of innovative materials with precision and accuracy. Electron tomography, single particle reconstruction, and microcrystal electron diffraction techniques have paved the way for the three-dimensional (3D) reconstruction of biological samples, synthetic materials, and hybrid nanostructures at near atomiclevel resolution. TEM tomography using a series of twodimensional (2D) projections has been used extensively in biological science, but in recent years it has become an important method in synthetic nanomaterials and soft matter research. TEM tomography offers unprecedented morphological details of 3D objects, internal structures, packing patterns, growth mechanisms, and self-assembly pathways of self-assembled colloidal systems. It complements other analytical tools, including small-angle X-ray scattering, and provides valuable data for computational simulations for predictive design and reverse engineering of nanomaterials with the desired structure and properties. In this perspective, I will discuss the importance of TEM tomography in the structural understanding and engineering of self-assembled nanostructures with specific emphasis on colloidal capsids, composite cages, biohybrid superlattices with complex geometries, polymer assemblies, and self-assembled protein-based superstructures.