In this communication experimental and theoretical results are reported affording strong evidence that interactions between electron rich atoms and the metal of tetroxide anions of group 7 elements are a new case of attractive and σ‐hole interactions. Single crystal X‐ray analyses, molecular electrostatic potentials, quantum theory of atoms‐in‐molecules, and noncovalent interaction plot analyses show that in crystalline permanganate and perrhenate salts the metal in Mn/ReO4− anion can act as electron acceptors, the oxygen of another Mn/ReO4− anion can act as the donor and supramolecular anionic dimers or polymers are formed. The name matere bond (MaB) is proposed to categorize these noncovalent interactions and to differentiate them from the classical metal‐ligand coordination bond.
This communication reports experimental and theoretical evidences of σ‐hole interactions in adducts between nitrogen or oxygen nucleophiles and tetroxides of osmium or other group 8 elements. Cocrystals between pyridine or pyridine N‐oxide derivatives and osmium tetroxide are characterized through various techniques and rationalized as σ‐hole interactions using DFT calculations and several other computational tools. We propose the term “osme bond” (OmB, Om=Fe, Ru, Os, (Hs)) for naming the noncovalent interactions wherein group 8 elements have the role of the electrophile. The word osme is the transcription of ὀσμή, the ancient Greek word for smell that was used to name the heaviest group 8 element in relation to the smoky odor of its tetroxide.
Interactions in crystalline tetrachloridoaurates of acetylcholine and dimethylpropiothetine are characterized by Au⋅⋅⋅Cl and Au⋅⋅⋅O short contacts. The former interactions assemble the AuCl4− units into supramolecular anionic polymers, while the latter interactions append the acetylcholine and propiothetine units to the polymer. The distorted octahedral geometry of the bonding pattern around the gold center is rationalized on the basis of the anisotropic distribution of the electron density, which enables gold to behave as an electrophile (π‐hole coinage‐bond donor). Computational studies prove that gold atoms in negatively charged species can function as acceptors of electron density. The attractive nature of the Au⋅⋅⋅Cl/O interactions described here complement the known aurophilic bonds involved in gold‐centered interactions.
The diphenylalanine peptide FF (H2N‐Phe‐Phe‐COOH) is a simple building‐block that has been extensively studied for multiple purposes. Among the many possible mutations finalized to tailor specific functions and properties of FF‐based materials, halogenation was marginally considered despite the huge changes it confers to molecular self‐assembly. Here, we report a detailed study on the role of halogenation, specifically iodination, in the aggregation behavior of iodine‐modified FF dipeptides. Single‐crystal X‐ray structures of mono‐iodinated—F(I)F—and bis‐iodinated—F(I)F(I)—diphenylalanine reveal that halogen atoms exert a key role in the packing features of these compounds. Specifically, halogen bonding provides additional stability to the dry interfaces formed by the aromatic rings, providing a contribution in the solid‐state packing of these dipeptides. The structural evidence of halogen bonding as crucial noncovalent interaction confirms the great potential of halogenation as supramolecular tool for peptide‐based systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.