The electrical properties of a p-n heterojunction of polycrystalline p-type Ni0.98Li0.02O and n-type Zn0.98Al0.02O have been investigated for potential applications in high-temperature oxide-based thermoelectric generators without metallic interconnects. Current-voltage characteristics of the junction were measured in a two-electrode setup in ambient air at 500 -1000 °C. The resistance and rectification of the junction decreased with increasing temperature. A non-ideal Shockley diode model was used to fit the measured current-voltage data in order to extract characteristic parameters of the junction, such as areaspecific series resistance Rs and parallel shunt resistance Rp, non-ideality factor, and the saturation current density. Rs and Rp decreased exponentially with temperature, with activation energies of 0.4 ± 0.1 eV and 1.1 ± 0.2 eV, respectively. The interface resistance of the direct p-n junction studied here is as such too high for practical applications in thermoelectrics. However, it is demonstrated that it can be reduced by order of magnitude by using a composite of the individual materials at the interface, yielding a large effective contact area.