2013
DOI: 10.1007/s10614-013-9406-7
|View full text |Cite
|
Sign up to set email alerts
|

Efficient Sampling and Meta-Modeling for Computational Economic Models

Abstract: Echantillonnage Efficace et Métamodélisation pour les Modèles Economiques de Simulation Informatique Résumé L'exploration des modèles de simulation informatique s'effectue au prix d'un coût en termes de temps de calcul d'autant plus élevé que le modèle comporte un grand nombre de paramètres. L'approche la plus courante en économie repose sur une exploration aléatoire, notamment grâce à des simulations Monte Carlo, et des outils de modélisation économétrique basiques pour approximer les propriétés des modèles d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
50
0

Year Published

2016
2016
2020
2020

Publication Types

Select...
6
1
1

Relationship

1
7

Authors

Journals

citations
Cited by 67 publications
(50 citation statements)
references
References 23 publications
0
50
0
Order By: Relevance
“…21 In summary, the Kriging meta-model "mimics" our original model using a simpler, mathematically-tractable approximation, fitted over a sample of the original model response surface. Kriging is a spatial interpolation method that under fairly general assumptions provides the best linear unbiased predictors for the response of complex, non-linear computer simulation models (Rasmussen andWilliams, 2006, Salle andYildizoglu, 2014). The SVD results indicated a common and small subset of just five important factors for the chosen metrics, excepts as discussed before, mostly through direct effects and not in interaction (linear effects).…”
Section: Sensitivity Analysismentioning
confidence: 84%
“…21 In summary, the Kriging meta-model "mimics" our original model using a simpler, mathematically-tractable approximation, fitted over a sample of the original model response surface. Kriging is a spatial interpolation method that under fairly general assumptions provides the best linear unbiased predictors for the response of complex, non-linear computer simulation models (Rasmussen andWilliams, 2006, Salle andYildizoglu, 2014). The SVD results indicated a common and small subset of just five important factors for the chosen metrics, excepts as discussed before, mostly through direct effects and not in interaction (linear effects).…”
Section: Sensitivity Analysismentioning
confidence: 84%
“…20. The entire methodology we use to map the loss function values to the monetary policy parameters in our non-linear ABM is detailed in Appendix B, and is based on Roustant et al (2010) and Salle and Yıldızoglu (2014).…”
Section: Optimal Monetary Policy Under Itmentioning
confidence: 99%
“…We use a design of experiments (DoE, hereafter) to cover the space of parameters -see, notably, Salle and Yıldızoglu (2014) for a pedagogical statement. Large sampling Cioppa (2002) and provided by Sanchez (2005), which combines space-filling properties and parsimony.…”
Section: Appendix A: Parameters Settingmentioning
confidence: 99%
“…Recent developments try to mitigate over-parameterization issues resorting to phase-diagrams (Gualdi et al, 2015), Kriging meta-modeling (Salle and Yıldızoglu, 2014;Dosi et al, 2016c;Bargigli et al, 2016), and machine-learning surrogates (Lamperti et al, 2016b). We shall briefly come back to these issues in the concluding remarks.…”
Section: Model Selection and Empirical Validationmentioning
confidence: 99%