2021
DOI: 10.1007/978-3-030-69143-1_50
|View full text |Cite
|
Sign up to set email alerts
|

Efficient Traffic Control System Using Fuzzy Logic with Priority

Abstract: The increase in the number of vehicles on the road is evident by the rate of traffic congestions on daily basis. Problems of traffic congestions are difficult to be measured. Emission of dangerous substances are some of the worrisome effects on weather, theft and delays to motorist are other effects. More and better road network connections have been found to be effective. However, road networks often have intersection(s) which introduces conflicts to right-of-way. These are solved using road traffic light con… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 28 publications
0
1
0
1
Order By: Relevance
“…Fuzzy is a logical system that aims to formalize from estimates to reasoning represented in the form of interest levels that have a range of values 0-1 (Boolean) (Zadeh, 1994). According to Peter et al (2021) logic in fuzzy is a very good thing to interpret data that occurs continuously effectively and efficiently, this is a good way to do cellular automata-based modeling because it uses parallel computing consisting of interconnected cells and has a continuous value, so in this study I processed data driving factors using this fuzzy logic concept (Figure 3). Ambon City driving factor consists of six parameters (Figure 3 and Figure 4) after classification and weighting must be converted to fuzzy values (value range 0-1) to facilitate the next analysis process for CA MC modeling in Idrisi Selva software (Wang et al, 2022;Mwabumba et al, 2022).…”
Section: Fuzzy Driving Factorsmentioning
confidence: 99%
“…Fuzzy is a logical system that aims to formalize from estimates to reasoning represented in the form of interest levels that have a range of values 0-1 (Boolean) (Zadeh, 1994). According to Peter et al (2021) logic in fuzzy is a very good thing to interpret data that occurs continuously effectively and efficiently, this is a good way to do cellular automata-based modeling because it uses parallel computing consisting of interconnected cells and has a continuous value, so in this study I processed data driving factors using this fuzzy logic concept (Figure 3). Ambon City driving factor consists of six parameters (Figure 3 and Figure 4) after classification and weighting must be converted to fuzzy values (value range 0-1) to facilitate the next analysis process for CA MC modeling in Idrisi Selva software (Wang et al, 2022;Mwabumba et al, 2022).…”
Section: Fuzzy Driving Factorsmentioning
confidence: 99%
“…Logika fuzzy yang digunakan adalah logika besar, yang berarti skor besar akan menunjukkan tingkat kepentingan yang besar pula, semakin putih nilai fuzzy (mendekati 1) maka akan semakin sesuai dan semakin hitam nilai fuzzy (mendekati 0) semakin tidak sesuai (Lisanyoto et al, 2019). Peter et al, (2021) berpendapat bahwa logika Fuzzy merupakan alat yang sangat baik untuk menafsirkan data kontinu secara efektif dan efisien, ini merupakan cara yang baik untuk melakukan pemodelan berbasis cellular automata karena menggunakan komputasi paralel yang terdiri atas unit (sel) yang saling terkoneksi dan memiliki nilai kontinu. Klasifikasi tingkat kesesuaian setiap driving factor dapat dilihat pada Tabel 1 dan Keseluruhan driving factor yang telah dioverlay dapat dilihat pada Gambar 2.…”
Section: Metodeunclassified