Insulin effects on cell metabolism, growth, and survival are mediated by its binding to, and activation of, insulin receptor. With increasing prevalence of insulin resistance and diabetes there is considerable interest in identifying novel regulators of insulin signal transduction. The transmembrane protein endothelial and smooth muscle cell-derived neuropilinlike protein (ESDN) is a novel regulator of vascular remodeling and angiogenesis. Here, we investigate a potential role of ESDN in insulin signaling, demonstrating that Esdn gene deletion promotes insulininduced vascular smooth muscle cell proliferation and migration. This is associated with enhanced protein kinase B and mitogen-activated protein kinase activation as well as insulin receptor phosphorylation. Likewise, insulin signaling in the liver, muscle, and adipose tissue is enhanced in Esdn Ϫ/Ϫ mice, and these animals exhibit improved insulin sensitivity and glucose homeostasis in vivo. The effect of ESDN on insulin signaling is traced back to its interaction with insulin receptor, which alters the receptor interaction with regulatory adaptor protein-E3 ubiquitin ligase pairs, adaptor protein with pleckstrin homology and Src homology 2 domain-c-Cbl and growth factor receptor bound protein 10-neuronal precursor cell-expressed developmentally downregulated 4. In conclusion, our findings establish ESDN as an inhibitor of insulin receptor signal transduction through a novel regulatory mechanism. Loss of ESDN potentiates insulin's metabolic and mitotic effects and provides insights into a novel therapeutic avenue.