Generalist parasites regularly evolve host-specific races that each specialize on one particular host species. Many host-specific races originate from geographically structured populations where local adaptations to different host species drive the differentiation of distinct races. However, in sympatric populations where several host races coexist, gene flow could potentially disrupt such host-specific adaptations. Here, we analyse genetic differentiation among three sympatrically breeding host races of the brood-parasitic common cuckoo, Cuculus canorus. In this species, host-specific adaptations are assumed to be controlled by females only, possibly via the female-specific W-chromosome, thereby avoiding that gene flow via males disrupts local adaptations. Although males were more likely to have offspring in two different host species (43% versus 7%), they did not have significantly more descendants being raised outside their putative foster species than females (9% versus 2%). We found significant genetic differentiation for both biparentally inherited microsatellite DNA markers and maternally inherited mitochondrial DNA markers. To our knowledge, this is the first study that finds significant genetic differentiation in biparentally inherited markers among cuckoo host-specific races. Our results imply that males also may contribute to the evolution and maintenance of the different races, and hence that the genes responsible for egg phenotype may be found on autosomal chromosomes rather than the female-specific W-chromosome as previously assumed.