Figure 1: Wave fields for 2D wind instruments simulated in real-time on a graphics card. A few examples are shown, which are simplified virtual models of (a) trumpet, (b) clarinet, and (c) flute. Our interactive wave solver lets the user design and instantly perform such virtual instruments, promoting experimentation with novel designs. Dynamic changes such as opening and closing tone holes or manipulating valves automatically changes the resulting sound and radiation pattern. Synthesized musical notes can be heard in the accompanying demonstrations.
AbstractWe present the first real-time technique to synthesize fullbandwidth sounds for 2D virtual wind instruments. A novel interactive wave solver is proposed that synthesizes audio at 128,000Hz on commodity graphics cards. Simulating the wave equation captures the resonant and radiative properties of the instrument body automatically. We show that a variety of existing non-linear excitation mechanisms such as reed or lips can be successfully coupled to the instrument's 2D wave field. Virtual musical performances can be created by mapping user inputs to control geometric features of the instrument body, such as tone holes, and modifying parameters of the excitation model, such as blowing pressure. Field visualizations are also produced. Our technique promotes experimentation by providing instant audio-visual feedback from interactive virtual designs. To allow artifact-free audio despite dynamic geometric modification, we present a novel time-varying Perfectly Matched Layer formulation that yields smooth, natural-sounding transitions between notes. We find that visco-thermal wall losses are crucial for musical sound in 2D simulations and propose a practical approximation. Weak non-linearity at high amplitudes is incorporated to improve the sound quality of brass instruments.