Carbon nanotubes (CNTs) are favored materials in the manufacture of electrochemical devices because of their mechanical and chemical stability, good thermal and electrical conductivities, physiochemical consistency, and featherweight. With such intriguing carbon nanotubes properties in mind, the current research aims to investigate the flow of hybridized nano liquid containing MWCNTs (multi-wall carbon nanotubes) and SWCNTs (single-wall carbon nanotubes) across a slendering surface in the presence of a gyrotactic-microorganism. The temperature and solutal energy equation are modified with the impact of the modified Fourier and Fick’s law, binary chemical reaction, viscous dissipation, and joule heating. The slip conditions are imposed on the surface boundaries. The flow equations are converted into ODEs by applying similarity variables. The bvp4c approach is applied to tackle the coupled and extremely nonlinear boundary value problem. The outputs are compared with the PCM (Parametric continuation method) to ensure that the results are accurate. The influence of involved characteristics on energy distribution, velocity profiles, concentration, and microorganism field are presented graphically. It is noted that the stronger values of the wall thickness parameter and the Hartmann number produce a retardation effect; as a result, the fluid velocity declines for MWCNT and SWCNT hybrid nano liquid. Furthermore, the transport of the mass and heat rate improves with a higher amount of both the hybrid and simple nanofluids. The amount of local skin friction and the motile density of microorganisms are discussed and tabulated. Furthermore, the findings are validated by comparing them to the published literature, which is a notable feature of the present results. In this aspect, venerable stability has been accomplished.