This paper investigates the coupled motion between the dynamics of N vessels coupled together in a one-dimensional array by springs, and the motion of the inviscid fluid sloshing within each vessel. We develop a fully-nonlinear model for the system relative to a moving frame such that the fluid in each vessel is governed by the Euler equations and the motion of each vessel is modelled by a forced spring equation. By considering a linearization of the model, the characteristic equation for the natural frequencies of the system is derived, and analysed for a variety of non-dimensional parameter regimes. It is found that the problem can exhibit a variety of resonance situations from the 1 : 1 resonance to (N + 1)-fold 1 : · · · : 1 resonance, as well as more general r : s : · · · : t resonances for natural numbers r, s, t. This paper focuses in particular on determining the existence of regions of parameter space where the (N + 1)-fold 1 : · · · : 1 resonance can be found.