This paper aimed at studying the effect of magnesium concentration in molten aluminum produced from beverage cans on the process of aluminothermic reduction of Mn2O3 particles obtained from the cathodes of discharged alkaline batteries. The experimental results were analyzed by using thermodynamic fundamentals and kinetic modeling, while the characterization of the reaction products obtained allowed the mechanism of the process to be described. It was found that the addition of magnesium improves the wettability of solid particles by molten aluminum, thus increasing the reaction and its subsequent incorporation into the molten aluminum solution of Mn released from the reduction reaction. This work was carried out using several initial magnesium concentrations; 1.0, 2.0, 3.0, and 4.0 wt %, under a constant temperature of 1073 K, a constant treatment time of 240 min, and a constant agitation speed of 200 rpm. The results show that the higher the initial magnesium concentration in the molten alloy, the higher the speed of the chemical reduction reaction of the Mn2O3 particles.