We developed an electrodeless electric thruster that utilizes ion cyclotron resonance/ponderomotive acceleration (ICR/PA) for ion acceleration. We conducted test particle simulations to assess the thruster's performance. We compared the thrusts obtained using argon (Ar) and helium (He) gas as propellants at the same mass flow rate. On the basis of a model that includes ion wall loss and ion-neutral collisions, we estimated the exhaust velocity and thrust. We found that He ions are less influenced by both ion wall loss and ion-neutral collisions than are Ar ions because the gyroradii of He ions are generally smaller than those of Ar ions and the ratio of the gyrofrequency to the collision frequency for He ions is larger than that for Ar ions. In addition, the exhaust velocities of He ions are larger than those of Ar ions, as predicted by the quasilinear theory and ponderomotive potential. Consequently, the thrust and specific impulse for He are larger than those for Ar.