“…8 Polymer nanofibers are intrinsically different from common bulk in that they demonstrate size-dependent behavior, a wellknown phenomenon frequently observed in nano-objects. Experimental studies have demonstrated the effect of size on the mechanical and thermodynamic properties of nano-objects, as seen with the elastic moduli of hollow fibers 9 and electrospun nanofibers, [10][11][12][13][14] which sharply increase below a certain fiber diameter, as well as shifts in object melting temperatures. 15,16 Similarly, thickness and surface interactions of ultrathin polymer films (the film thickness is in the order of 2R g of a polymer chain, or less) highly influence their glass transition and melting temperatures, [17][18][19] polymer dynamics in the glassy state, 20 crystallization kinetics and degree of crystallinity, [21][22][23] phase behavior, 24 and morphology.…”