Ferroelectric nanostructures are attracting tremendous interest because they offer a promising route to novel integrated electronic devices such as non-volatile memories and probe-based mass data storage. Here, we demonstrate that high-density arrays of nanostructures of a ferroelectric polymer can be easily fabricated by a simple nano-embossing protocol, with integration densities larger than 33 Gbits inch(-2). The orientation of the polarization axis, about which the dipole moment rotates, is simultaneously aligned in plane over the whole patterned region. Internal structural defects are significantly eliminated in the nanostructures. The improved crystal orientation and quality enable well-defined uniform switching behaviour from cell to cell. Each nanocell shows a narrow and almost ideal square-shaped hysteresis curve, with low energy losses and a coercive field of approximately 10 MV m(-1), well below previously reported bulk values. These results pave the way to the fabrication of soft plastic memories compatible with all-organic electronics and low-power information technology.
Single microbial cells can show important local variations of elasticity due to the complex, anisotropic composition of their walls. An example of this is the yeast during cell division, where chitin is known to accumulate in the localized region of the cell wall involved in budding. We used atomic force microscopy (AFM) to measure quantitatively the local mechanical properties of hydrated yeast cells. Topographic images and spatially resolved force maps revealed significant lateral variations of elasticity across the cell surface, the bud scar region being significantly stiffer than the surrounding cell wall. To get quantitative information on sample elasticity, force curves were converted into force vs indentation curves. The curves were then fitted with the Hertz model, yielding Young's modulus values of 6.1 ( 2.4 and 0.6 ( 0.4 MPa for the bud scar and surrounding cell surface, respectively. These data lead us to conclude that in yeast, the bud scar is 10 times stiffer than the surrounding cell wall, a finding which is consistent with the accumulation of chitin in the bud scar region. This is the first report in which spatially resolved AFM force curves are used to distinguish regions of different elasticity at the surface of single microbial cells in relation with function (i.e., cell division). In future research, this approach will provide fundamental insights into the spatial distribution of physical properties at heterogeneous microbial cell surfaces.
The first measurements of the tensile elastic modulus of polypyrrole nanotubes are presented. The nanotubes were mechanically tested in three points bending using atomic force microscopy. The elastic tensile modulus was deduced from force-curve measurements on different nanotubes with outer diameter ranging between 35 and 160 nm. It is shown that the elastic modulus strongly increases when the thickness or outer diameter of polypyrrole nanotubes decreases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.