The mechanical properties of the lining are directly affected by defects such as voids behind the lining and insufficient thickness of the lining. In order to quantitatively evaluate this effect, the mechanical behavior of the lining under the influence of the void behind the lining, the insufficient thickness of the lining, and the combination of the two kinds of defects are adopted by the 1/5 scale model test. Based on the experimental research, numerical calculation models based on the CDP model for defect lining are established, with the effects of load direction, stratum stiffness, defect location, defect type, and degree on the mechanical behavior of the lining analyzed by the numerical simulation. The experimental and numerical results show that the void weakens the stiffness of the lining. As the void range increases, the lining becomes more deformable and its bearing capacity decreases with the “S” curve. Thinning significantly reduces the deformation properties of the lining and the bearing capacity and stiffness of the thinned section. The lining bearing capacity decreases linearly with the increase of the thinning ratio, when the load is applied at the thinning. With the influence of combined defects on the load-displacement curve of the lining fluctuating drastically, the mechanical properties of the lining are significantly reduced. The bearing capacity of lining decreases with the increase of composite defects in a “S” shape. The effect of void and lining thinning on the lining bearing capacity increases with the increase of the stiffness of the formation. The loss rate equation of the concrete lining bearing capacity under the influence of existing defects is established by using the L-M nonlinear regression analysis, a provision of scientific guidance for the safety evaluation of the defect lining.