Volcanic ash concentrations in the plume from Sakurajima volcano in Japan are observed from airplanes equipped with optical particle counters and GPS tracking devices. The volcano emits several puffs a day. The puffs are also recorded by the Sakurajima Volcanological Observatory. High concentrations are observed in the puffs and fallout driven by vertical air current, called streak fallout. Puffs dispersion is analyzed by the classical diffusion-advection method and a new gravitational dispersion method. The fluid mechanic of the gravitational dispersion, streak fallout, and classical diffusion-advection theory is described in three separate appendices together with methods to find the time gravitational dispersion constant and the diffusion coefficient from satellite photos. The diffusion-advection equation may be used to scale volcanic eruptions so the same eruption plumes can be scaled to constant flux and wind conditions or two eruptions can be scaled to each other. The dispersion analyses show that dispersion of volcanic plumes does not follow either theories completely. It is most likely diffusion in the interface of the plume and the ambient air, together with gravitational flattening of the plumes core. This means larger boundary concentration gradients and smaller diffusion coefficients than state of the art methods can predict.
Cyclic torsional simple shear (CTSS) tests and cyclic triaxial (CTX) tests were carried out to investigate the dynamic deformation characteristics of sands and rockfill materials. It was found that the shear modulus and damping ratio can be expressed as a function of shear strain, void ratio, and confining stress. Also the shear modulus in CTSS tests is larger than in CTX tests because of the influence of the intermediate principal stress. When the shear strain is increased, the shear modulus (G) and damping ratio (h) of the rockfill materials were altered at smaller strains than in sands. Key words : sands, rockfill materials, torsional simple shear, shear modulus, damping ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.