A new 2D material, phosphorene, has several remarkable advantages; various superiorities make phosphorene a research hotspot. This paper provides comprehensive information about the structure and electronic and magnetic properties of phosphorene adsorbed with atoms, including alkali and alkaline-earth metal atoms, nonmetallic atoms, noble metal atoms, and transition-metal atoms. Phosphorene adsorbed with alkali and alkaline-earth metal atoms, such as Li and Na adatoms, becomes an n-type semiconductor, while phosphorene adsorbed with Be and Mg atoms becomes a p-type semiconductor. In view of nonmetallic adatoms (B, C, N, and O), the B adatom decorated phosphorene becomes metallic, the band gap of phosphorene adsorbed with C adatom decreases, and the phosphorene is p-type with N adatom, while the electronic property of O adatom adsorption case is affected slightly. Regarding noble metal adatoms adsorption condition, the Ag adatom makes phosphorene a n-type semiconductor, the Au adatom induces phosphorene to have a magnetism of 1 μB, and the electronic property of phosphorene is changed by adsorbing with Pt adatom. Among transition-metal adatoms, such as Fe, Ni, Co, Cu, and Zn adatoms, the band gap is reduced when Fe/Ni adatom adheres to the surface of phosphorene, The Co adsorbed phosphorene turns into a polar-gapless semiconductor and phosphorene is proved to be n-type with Cu adatom, but it is testified that the Zn atom is not suitable to adsorb on the phosphorene.