In this research, the effect of alloying elements on the mechanical and electrical properties of powder metallurgy (PM) copper composite reinforced with vapor-grown carbon bers (VGCFs) was investigated. The alloying elements were titanium (Ti) and silicon (Si) that could easily form their carbides at elevated temperatures. The VGCFs-doped Cu-Ti composites showed a slightly decreased yield stress in comparison with the unadulterated Cu-Ti alloy. The electrical conductivity of the composite materials increased with increasing VGCFs content. However, the VGCFs-doped Cu-Si composites exhibited the same mechanical and electrical properties as the Cu-Si alloy. It was found that the reaction between Ti and VGCFs in forming TiC particles consumed the Ti solutes in the matrix and led to a reduction of solid solution strengthening effect by Ti elements, whereas the reaction between Si and VGCFs in forming SiC was observed. In addition, VGCFs adulteration showed no effect on the strength and conductivity improvement of Cu-Si alloy.