We report the synthesis, characterization, and gas sensing properties of a styrene copolymer bearing α‐thiophene end group and fullerene (C60) pendant moieties P(S‐co‐CMS‐C60). First, the copolymer of styrene (S) and chloromethylstyrene (CMS) monomers was prepared in bulk via a bimolecular nitroxide‐mediated radical polymerization (NMP) technique using benzoyl peroxide (BPO) as the radical initiator and nitroxy‐functional thiophene compound (Thi‐TEMPO) as the co‐radical and this gave α‐thiophene end‐capped copolymer P(S‐co‐CMS). The chloromethylstyrene units of P(S‐co‐CMS) allowed further side‐chain functionalization onto P(S‐co‐CMS). The obtained P(S‐co‐CMS) was then reacted with sodium azide (NaN3) and this led to the copolymer with pendant azide groups, P(S‐co‐CMS‐N3), and then grafted with electron‐acceptor C60 via the reaction between N3 and C60. The final product was characterized by using NMR, FTIR, and UV–vis methods. Electrical characterization of P(S‐co‐CMS‐C60) thin film was also investigated at between 30 and 100 °C as the ramps of 10 °C. Temperature dependent electrical characterization results showed that P(S‐co‐CMS‐C60) thin film behaves like a semiconductor. Furthermore, P(S‐co‐CMS‐C60) was employed as the sensing layer to investigate triethylamine (TEA), hydrogen (H2), acetone, and ethanol sensing properties at 100 °C. The results revealed that P(S‐co‐CMS‐C60) thin film has a sensing ability to H2. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43641.