The properties of tantalum nitride (TaN x ) thin films on silicon and low temperature co-fired ceramics based substrates were investigated with respect to their potential use for sensor elements operated under harsh environmental conditions. For deposition reactive direct current magnetron sputtering was applied at constant back pressure (=0.9 Pa) and plasma power (=1,000 W). In all experiments, the substrates were nominally unheated. The films were investigated electrically by four point probing. For morphological and chemical analyses, a large variety of techniques such as focussed ion beam, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and glow discharge optical emission spectroscopy were used. Only by combining all these techniques for analysing TaN x films synthesised with varying nitrogen content in the deposition chamber can a proper evaluation of the microstructure and the chemical composition be done. Both the microstructure and the chemical composition are influenced strongly with a resulting effect on the electrical film properties.