Treating manure with aluminum sulfate (alum) is a best management practice (BMP) which reduces ammonia (NH3) emissions and phosphorus (P) runoff from poultry litter. However, the price of alum has increased markedly in recent years, creating a need for less expensive products to control NH3 volatilization. The objective of this study was to evaluate the effects of a new litter amendment made from alum mud, bauxite, and sulfuric acid (alum mud litter amendment or AMLA) on NH3 emissions, litter chemistry, and poultry production in a pen trial. Three separate flocks of 1000 broilers were used for this study. The first flock of birds was used to produce the poultry litter needed for the experiment. The second and third flocks of birds were allocated to 20 pens in a randomized block design with four replicates of five treatments: (1) control, (2) 49 kg AMLA/100 m2 incorporated, (3) 98 kg AMLA/100 m2 incorporated, (4) 98 kg AMLA/100 m2 surface applied, and (5) 98 kg alum/100 m2 incorporated. Ammonia flux measurements and litter samples were collected from each pen at day 0, 7, 14, 21, 28, 35, and 42. The average litter pH for both flocks was higher in untreated litter (7.92) compared to incorporating alum (7.32) or AMLA (7.18). The two flocks’ average NH4-N concentrations at day 42 were 38% and 30% higher for the high rates of incorporated alum and AMLA compared to the untreated litter. Compared with untreated litter, AMLA reduced overall NH3 emissions by 27% to 52% which was not significantly different from reductions in emissions by alum (35%). Alum mud litter amendment reduced cumulative NH3 losses from litter as much as, and in some cases more than, alum applied at the same rate. These data indicate that AMLA, which can be manufactured for lower price than alum, is an effective alternative litter amendment for reducing NH3 emissions from poultry litter.