2022
DOI: 10.1016/j.epsr.2022.107975
|View full text |Cite
|
Sign up to set email alerts
|

Electricity theft detection using big data and genetic algorithm in electric power systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
24
0

Year Published

2023
2023
2025
2025

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 26 publications
(24 citation statements)
references
References 34 publications
0
24
0
Order By: Relevance
“…They are treated as outliers and are removed using the ‘TSR of thumb’. Outliers are removed using the TSR rule as mentioned in [10] normalf0.33emnormalv=N2,0.33emviNaN,vi()m1,0.33emvi()m+1NaN0.33em0,0.33emviNaN,0.33emvi()m1or0.33emvi0.33em()m+1NaN0.33em0.33emnormalvnormaliandvnormaliNaN$$\begin{eqnarray}{\mathrm{f\ }}\left( {\mathrm{v}} \right)\ &&= \left\{ {\frac{{\frac{N}{2},\ {v}_i \in NaN,{v}_i\left( {m - 1} \right),\ {v}_i\left( {m + 1} \right) \in NaN\ }}{{0,\ {v}_i \in NaN,\ {v}_i\left( {m - 1} \right)or\ {v}_{i\ }\left( {m + 1} \right) \in NaN}}} \right\}\nonumber \\ &&{\mathrm{\ \ }}\forall {{\mathrm{v}}}_{\mathrm{i}}{\mathrm{\ and\ v}}_{\mathrm{i}} \notin {\mathrm{NaN}}\end{eqnarray}$$O()vi,tbadbreak=wi0.16emf0.16emvi(t¯)goodbreak>vi(t¯)0.28emotherwise$$\begin{equation*}O\left( {{v}_i,t} \right) = wi\,f\,{v}_i(\bar{t}) > {v}_i(\bar{t})\;{\mathrm{otherwise}}\end{equation*}$$where wbadbreak=avg()vi)+2s()vi()t$$\begin{equation}w = {\mathrm{avg}}\left( {{v}_i} \right)) + 2s\left( {{v}_i\left( t \right)} \right)\end{equation}$$…”
Section: Methodology Proposalsmentioning
confidence: 99%
See 3 more Smart Citations
“…They are treated as outliers and are removed using the ‘TSR of thumb’. Outliers are removed using the TSR rule as mentioned in [10] normalf0.33emnormalv=N2,0.33emviNaN,vi()m1,0.33emvi()m+1NaN0.33em0,0.33emviNaN,0.33emvi()m1or0.33emvi0.33em()m+1NaN0.33em0.33emnormalvnormaliandvnormaliNaN$$\begin{eqnarray}{\mathrm{f\ }}\left( {\mathrm{v}} \right)\ &&= \left\{ {\frac{{\frac{N}{2},\ {v}_i \in NaN,{v}_i\left( {m - 1} \right),\ {v}_i\left( {m + 1} \right) \in NaN\ }}{{0,\ {v}_i \in NaN,\ {v}_i\left( {m - 1} \right)or\ {v}_{i\ }\left( {m + 1} \right) \in NaN}}} \right\}\nonumber \\ &&{\mathrm{\ \ }}\forall {{\mathrm{v}}}_{\mathrm{i}}{\mathrm{\ and\ v}}_{\mathrm{i}} \notin {\mathrm{NaN}}\end{eqnarray}$$O()vi,tbadbreak=wi0.16emf0.16emvi(t¯)goodbreak>vi(t¯)0.28emotherwise$$\begin{equation*}O\left( {{v}_i,t} \right) = wi\,f\,{v}_i(\bar{t}) > {v}_i(\bar{t})\;{\mathrm{otherwise}}\end{equation*}$$where wbadbreak=avg()vi)+2s()vi()t$$\begin{equation}w = {\mathrm{avg}}\left( {{v}_i} \right)) + 2s\left( {{v}_i\left( t \right)} \right)\end{equation}$$…”
Section: Methodology Proposalsmentioning
confidence: 99%
“…After filling in the missing and erroneous values and removing outlier values as also done in [10], the data values are normalized using min–max normalization. N()vi()tbadbreak=0.33emvi()tmin()imax()vmin()v¯$$\begin{equation}{\mathrm{N\ }}\left( {{{\mathrm{v}}}_{\mathrm{i}}\left( {\mathrm{t}} \right)} \right) = \ \frac{{{{\mathrm{v}}}_{\mathrm{i}}\left( {\mathrm{t}} \right) - \min \left( \ \right)}}{{{\mathrm{imax}}\left( {\mathrm{v}} \right) - \min \left( {\bar{v}} \right)}}\end{equation}$$vi (t) is the usage of electricity at time t [10], min ( v ) is the usage of minimum electricity [10], and max( v ) is the usage of electricity at the time ( t ).…”
Section: Methodology Proposalsmentioning
confidence: 99%
See 2 more Smart Citations
“…Both methods, PSO and ACO, have high computational complexity. In [31], the total electricity cost was minimized in SGs with short-term time averaged electricity cost as an objective function in GA. Another aspect of theft detection with feature engineering in SGs is presented in [32] using the GA. The dataset used was based on 4000 household records.…”
Section: Related Workmentioning
confidence: 99%