Antibacterial materials that prevent bacterial infections and mitigate bacterial virulence have attracted great scientific interests. In recent decades, the bactericidal polymers have been presented as promising candidates to combat bacterial pathogens, mainly based on the construction of bactericidal cationic polymers, functionalization with biocidal agents, and formation of bacterial-repelling layers. However, these established strategies have inherent disadvantages because they often overlook important features such as their biocompatibility and biosafety, especially for biomedical applications. In recent years, many efforts have been made focusing on the development of multifunctional antibacterial materials to meet the elaborate requirements for medical devices and public hygiene products. Herein the recent advances in developing multifunctional materials for their antibacterial activities together with other functions including "kill-and-release" capability, hemocompatibility, cell proliferation promoting properties, and coagulation promoting ability for wound dressing are highlighted. In addition, the outlooks on the remaining challenges that should be addressed in the field of multifunctional antibacterial materials are also described.