Electroanalytical chemistry has been advanced through portable devices, providing methods and sensors for the detection of analytes with high sensitivity and accuracy. This subfield of electrochemistry has the potential to be utilized in industry and analytical quality control, in general. This results in an increasing demand for trained personnel, capable of operating benchtop and portable electroanalytical equipment. Although electrochemical techniques are routinely taught in theoretical undergraduate courses, they need to be more often incorporated into experimental didactic activities. Herein, we describe the application of an effective, hands-on, and low-maintenance experiment that can enhance the learning experience of electroanalytical methods and their use in industrial quality control settings. This activity is based on the detection of ascorbic acid (vitamin C) by employing cyclic voltammetry at unmodified glassy carbon electrodes (GCE) in real juice samples. This didactic experiment teaches students about the theoretical concepts of cyclic voltammetry, three-electrode cell setup, chemical reversibility, data treatment, and quantitative analysis. This teaching approach was conducted in a second-year analytical chemistry course and was easily adapted to social distancing measures imposed by the COVID-19 pandemic.