An impedimetric immunosensor for fumonisin B1 (FB1) was developed from a poly(2,5-dimethoxyaniline)-multi-walled carbon nanotube (PDMA-MWCNT) composite on the surface of glassy carbon electrode (GCE). The composite was prepared electrochemically and characterized using cyclic voltammetry. The preparation of the FB1 immunosensor involved the drop-coating of a bovine serum albumin mixture of the anti-fumonisin antibody (anti-Fms) onto the composite polymer-modified GCE. The electrochemical impedance spectroscopy (EIS) responses of the FB1 immunosensor (GCE/PDMA-MWCNT/anti-Fms) have a linear range of 7 to 49 ng·L−1, and the corresponding sensitivity and detection limits are 0.272 kΩ L·ng−1 and 3.8 pg·L−1, respectively. The limit of detection of the immunosensor for certified corn sample (i.e., certified reference material) is 0.014 ppm FB1, which is in excellent agreement with the value published by the vendors and significantly more accurate than that obtained with enzyme-linked immunosorbent assay (ELISA).
Paroxetine is the second most prescribed selective serotonin reuptake inhibitor (SSRI) antidepressant drug, characterized by extensive inter-individual variation in steady state plasma concentrations resulting in drug toxicity amongst patinets. A nanopolymeric biosensor for studying the biotransformation of paroxetine is presented. The bioelectrode system consists of cytochrome P450-2D6 enzyme encapsulated in nanotubular poly (8-anilino-1-napthalene sulphonic acid) electrochemically deposited on gold. The biosensing procedure involved the determination of the extent of modulation of fluvoxamine responses to the P450-2D6 enzyme electrode after incubation in paroxetine standard solutions. Paroxetine inhibited the activity of cytochrome P450-2D6 (CYP2D6) resulting in a decrease in the fluvoxamine signal of the biosensor. The biosensor gave a linear analytical response for the paroxetine in the interval 0.005 and 0.05 μM, with a detection limit of 0.002 μM and a response time of 30 s. Electrochemical Michaelis–Menten kinetics of the reversible competitive inhibition of the fluvoxamine responses of the biosensor by 0, 0.05 and 0.1 μM paroxetine gave apparent Michaelis–Menten constant (KMapp) values of 1.00 μM, 1.11 μM and 1.25 μM, respectively. The corresponding value for the maximum response, IMAX was 0.02 A. The dissociation constant, KI, value evaluated from Dixon analysis of the paroxetine modulation data was estimated to be-0.02 μM while Cornish-Bowden analysis confirmed the competitive inhibitory characteristics of the enzyme.
Wireless electrochemiluminescence is generated using interdigitated, 3D printed, titanium arrays as feeder electrodes to shape the electric field. Gold microparticles (45 m diameter), functionalised with 11-mercaptoundecanoic acid, act as micro-emitters...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.