The electrocaloric properties of Ba(Zr,Ti)O3 and (Ba,Sr)TiO3 ceramics (BZT and BST, respectively) were investigated by the indirect estimation and direct measurement of temperature–electric field (T–E) hysteresis loops. The measured T–E loops had shapes similar to those of the strain–electric field (s–E) loops. The measured temperature changes (ΔTs) at around 30 °C of the BZT ceramics sintered at 1450 °C and BST ceramics sintered at 1600 °C upon the release of the electric field from 30 kV/cm to 0 were 0.34 and 0.57 K, respectively. The temperature dependences of the electromechanical and electrocaloric properties were investigated. The BZT ceramics sintered at 1450 °C exhibited the largest electromechanical and electrocaloric properties at around 30 °C, which corresponds to the phase transition temperature. BST is more temperature dependent than BZT. BST ceramics sintered at 1600 °C exhibited the largest electromechanical and electrocaloric properties at around 29 °C, which is about 10 °C higher than the phase transition temperature.