Fuel cells use electrochemical processes to transform the chemical energy of a fuel into electrical energy, which is a key enabler for the shift to an H2-based economy. Because of their high energy conversion efficiency and low pollution emissions, fuel cells with polymer electrolyte membranes (PEMFCs) are regarded as being in frontline of commercialization for the transportation and automotive industries. However, there are two major hurdles to their future commercialization: cost and durability, which promote basic study and development of their components. In this article, we reviewed the materials, functional components, fabrication technologies and assembling characteristics related to PEMFCs. Platinum's significance as a catalyst in PEMFC applications stems from the fact that it beats all other catalysts in three critical parts: stability, selectivity, and activity. In order to create Pt rich surfaces of NPs, Pt metal is alloyed with d-block metals like Cu, Ni, Fe, and Co. PEMFC development is inextricably tied to the benefits and drawbacks of the Nafion membrane under various operating circumstances. Nafion membrane has some drawbacks, including poor performance at high temperatures (over 90℃), low conductivity under low humidification, and high cost. As a result, a variety of nanoscale additives are frequently added to Nafion nanocomposites to enhance the material's properties under fuel cell working conditions. Fiber composite based bipolar plates can deliver best performance. The assembly of PEMFC based on strap approach is being explored. The applications of PEMFC are also projected.