Stainless steel, which is used in metallic bipolar plates, is generally known to have excellent corrosion resistance, which is achieved by forming oxide films. However, localized corrosion occurs when the oxide films are destroyed by pH and chloride ions. Particularly, since the operating condition of polymer electrolyte membrane fuel cells (PEMFCs) is strongly acidic, the reduced stability of the oxide films leads to the corrosion of the stainless steel. In this research, the electrochemical characteristics of 304L and 316L stainless steels were investigated in an accelerating solution that simulated the cathode condition of PEMFCs with chloride concentrations. Results under all experimental conditions showed that the corrosion current density of 304L stainless steel was at least four times higher than that of 316L stainless steel. Maximum damage depth was measured at 6.136 μm and 9.192 μm for 304L stainless steel and 3.403 μm and 5.631 μm for 316L stainless steel for chloride concentrations of 0 and 1000 ppm, respectively. Furthermore, 304L and 316L stainless steels were found to have uniform and localized corrosion, respectively. The differences in the electrochemical characteristics of 304L and 316L stainless steel are considered to be due to the molybdenum contained in the chemical composition of 316L stainless steel.
To commercialize the fuel cell electric vehicles(FCEVs), it is essential to reduce the weights of the components and lower the manufacturing cost. In this research, the effect of hydrogen charging on the mechanical characteristics of aluminum alloys and CrN coating was also investigated through cathodic hydrogen charging, indentation, and scratch experiments. The delamination of the CrN coating by hydrogen charging was observed through the experiments. In addition, as the hydrogen charging time increased, the hardness of the aluminum alloy increased about 29.7%, whereas the hardness of the CrN coating decreased about 42.8%. In particular, in the scratch experiment, it was found that hydrogen embrittlement and hydrogen blistering occurred at the interface between the CrN coating layer and the aluminum alloy due to hydrogen permeation and diffusion. Therefore the adhesion strength of the CrN coating decreased significantly. However, the CrN coating was presented to suppress hydrogen permeation into the aluminum alloy.
In this study, we investigated the performance and reliability of commercial corrosion sensors for monitoring the integrity of piping systems in various fluid environments as an alternative to ultrasonic transducers. To this end, we investigated pipes’ wall-thinning using commercial electrical resistance (ER), linear polarization resistance (LPR), and ultrasonic transducer (UT) sensors under various operating environments. A pilot-scale closed-loop test bed was built to simulate a real pipeline flow situation, from which the sensor data were collected and analyzed. Experimental results indicate that, in the case of the LPR sensor, it is challenging to accurately measure the corrosion rate when a specific measure exceeds the threshold in a severe corrosion environment. In contrast, the ER sensor could measure metal loss under all conditions and reflect the corresponding characteristics. The metal loss (about 0.25 mm) of the real pipe after the experiment was confirmed to be equal to the metal loss (0.254 mm) measured by the sensor. Furthermore, the regression analysis revealed a high correlation between the results obtained from the ER and UT sensors. Thus, evaluating the remaining thickness of the piping system using the commercial ER sensor is deemed to be effective and reliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.