Corrosion fatigue is an important factor that limits the life of grid materials including wire clips. In order to study the effect of corrosion fatigue and to select suitable grid steels, this paper focuses on the corrosion fatigue properties of Q235 carbon steel, Q235 galvanized steel, and 316L stainless steel in the corrosive environments of air, 2wt% NaCl, 5wt% NaCl, and 8wt% NaCl. Through the fatigue test in the corrosive environment, and the surface morphology scanning and microstructure observation of the fracture, the following conclusions are drawn: the three materials are more susceptible to corrosion fatigue in the Cl− environment, and the higher the Cl− concentration, the greater the likelihood of fracture caused by corrosion fatigue for these three materials. By analyzing the surface roughness, dimples, and cracks in the microstructure, it is found that 316L stainless steel is highly sensitive to Cl− corrosion under cyclic stress, and Q235 galvanized steel is more resistant to Cl−. By plotting the stress fatigue life curve of Q235 galvanized steel, it is found that the corrosion fatigue life decreases as the Cl− concentration increases. For wire clips in areas with severe Cl− pollution, Q235 galvanized steel should be selected to achieve the best anti-corrosion fatigue effect; at the same time, the original parts should be repaired or replaced in a timely manner based on the predicted corrosion fatigue life.