The adsorptive and electrochemical behaviors of clozapine (CLZ) were investigated on a glassy carbon electrode that was electrochemically treated by anodic oxidation at +1.8 V, following potential cycling in the potential range from -0.8 to 1.0 V vs. Ag/AgCl reference electrode. Based on the obtained electrochemical results, an electrochemical-chemical (EC) mechanism was proposed to explain the electrochemical oxidation of CLZ. The resulting electrochemically pretreated glassy carbon electrode (EPGCE) showed good activity to improve the electrochemical response of the drug. CLZ was accumulated in a phosphate buffer (pH 6) at a certain time, and then determined by differential pulse voltammetry. The anodic and cathodic peak currents showed a linear function in the concentration ranges of 0.1 -1, 1 -10 and 10 -100 μM with various accumulation times. The proposed method was successfully used for the determination of CLZ in pharmaceutical preparations. The preconcentration medium-exchange approach was utilized for the selective determination of the drug in spiked urine samples with satisfactory results. The recovery levels of the method reached 96% (RSD, 1.8%) and 90% (RSD, 2.8%) for urine and plasma samples, respectively.