Coating with titanium oxides is a promising method to improve the blood compatibility of materials to be used for medical implants. However, biodegradation of the coating can result in microparticles that subsequently cause oxidative stress. Therefore, the present study was carried out to throw some light on the mechanisms affecting the reaction of tissue surroundings Ti implants either in the form of titanium oxide or not in tibiae of rats. The serum collected twice from animals during the period of study and rats were sacrificed after two months of implantation. The complete blood picture, total proteins content and the activities of some serum enzymes were determined as liver biomarker. Kidney function was examined by measuring the levels of serum creatinine and uric acid. The level of lipid peroxidation and the activities of superoxide dismutase, catalase and glutathione S-transferase as well as glutathione content in liver and kidney tissue were evaluated. It has been indicated that the lipid peroxidation is one of the molecular mechanisms involved in Ti-plate induced cytotoxicity however; the TiO(2)-plate did not. The biodegradation of Ti-plate was very slow that could explain why the all enzymatic and non-enzymatic antioxidant not affected by implantation of Ti-plate. The total antioxidant level in serum was better in rats had TiO(2)/Ti-plate than those animals that had Ti-plate. The coating of titanium implants with titanium oxide leads to attaining of reduced the oxidative state in the cells, which enhance the healing process in comparison with the uncoated implants.