In vitro models of the human central nervous system (CNS), particularly those derived from induced pluripotent stem cells (iPSCs), are becoming increasingly recognized as useful complements to animal models for studying neurological diseases and developing therapeutic strategies. However, many current 3D CNS models suffer from deficits that limit their research utility. In this work, we focused on improving the interactions between the extracellular matrix (ECM) and iPSC-derived neurons to support model development. The most common ECMs used to fabricate 3D CNS models often lack the necessary bioinstructive cues to drive iPSC-derived neurons to a mature and synaptically connected state. These ECMs are also typically difficult to pattern into complex structures due to their mechanical properties. To address these issues, we functionalized gelatin methacrylate (GelMA) with an N-cadherin extracellular peptide epitope to create a biomaterial termed GelMA-Cad. After photopolymerization, GelMA-Cad forms soft hydrogels (on the order of 2 kPa) that can maintain patterned architectures. The N-cadherin functionality promotes survival and maturation of single-cell suspensions of iPSC-derived glutamatergic neurons into synaptically connected networks as determined by viral tracing and electrophysiology. Immunostaining reveals a pronounced increase in presynaptic and postsynaptic marker expression in GelMA-Cad relative to Matrigel, as well as extensive co-localization of these