The electrochemical behavior and the interaction of alizarin red S (ARS) with calf thymus DNA was investigated on a bare glassy carbon electrode (GCE) and DNA modified GCE (DNA/GCE), respectively. ARS showed a pair of redox peaks at À 0.445 V and À 0.414 V on a bare GCE. On addition of DNA into the ARS solution, the peak current of ARS decreased and the peak potential positively shifted, but without new redox peaks appeared. The ARS reduction peak current increased with immersion time on a DNA/GCE. The results showed that ARS could interact with DNA molecules by intercalative binding mode. The equilibrium constant, binding number and the ratio of binding constant for oxidized and reduced ARS forms were obtained. The DNA damage was directly detected by appearance of guanosine and adenosine bases oxidation signal. The influence of experimental conditions on DNA damage extent was discussed in detail.