BackgroundRecent evidence has suggested that peripheral inflammatory responses induced by lipopolysaccharides (LPS) play an important role in neuropsychiatric dysfunction in rodents. Interleukin-1β (IL-1β), a pro-inflammatory cytokine, has been proposed to be a key mediator in a variety of behavioral dysfunction induced by LPS in mice. Thus, inhibition of IL-1β may have a therapeutic benefit in the treatment of neuropsychiatric disorders. However, the precise underlying mechanism of knock-down of IL-1β in repairing behavioral changes by LPS remains unclear.MethodsThe mice were treated with either IL-1β shRNA lentivirus or non-silencing shRNA control (NS shRNA) lentivirus by microinjection into the dentate gyrus (DG) regions of the hippocampus. After 7 days of recovery, LPS (1 mg/kg, i.p.) or saline was administered. The behavioral task for memory deficits was conducted in mice by the novel object recognition test (NORT), the anxiety-like behaviors were evaluated by the elevated zero maze (EZM), and the depression-like behaviors were examined by the sucrose preference test (SPT) and the forced swimming test (FST). Furthermore, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), nuclear factor erythroid-derived 2-like 2 (Nrf2), heme oxygenase 1 (HO1), IL-1β, tumor necrosis factor (TNF-α), neuropeptide VGF (non-acronymic), and brain-derived neurotrophic factor (BDNF) were assayed.ResultsOur results demonstrated that IL-1β knock-down in the hippocampus significantly attenuated the memory deficits and anxiety- and depression-like behaviors induced by LPS in mice. In addition, IL-1β knock-down ameliorated the oxidative and neuroinflammatory responses and abolished the downregulation of VGF and BDNF induced by LPS.ConclusionsCollectively, our findings suggest that IL-1β is necessary for the oxidative and neuroinflammatory responses produced by LPS and offers a novel drug target in the IL-1β/oxidative/neuroinflammatory/neurotrophic pathway for treating neuropsychiatric disorders that are closely associated with neuroinflammation, oxidative stress, and the downregulation of VGF and BDNF.