This paper reports the facile synthesis of a novel architecture of Cu-MnS with PVP, where the high theoretical capacitance of MnS, low-cost, and high electrical conductivity of Cu, as well as appreciable surface area with high thermal and mechanical conductivity of PVP, as a single entity to fabricate a high-performance electrode for supercapacitor. Benefiting from their unique structures, the Cu-MnS with 2PVP electrode materials show a high specific capacitance of 833.58 F g −1 at 1 A g −1 , reversibility for the charge/discharge process, which are much higher than that of the MnS-7 h, Cu-MnS, and Cu-MnS with 1 and 3PVP. The presence of an appropriate amount of PVP in Cu-MnS is favorable for improving the electrochemical performance of the electrode and the existence of Cu was inclined to enhance the electrical conductivity. The Cu-MnS with 2PVP electrode is a good reference for researchers to design and fabricate new electrode materials with enhanced capacitive performance.