Ni–W/Cr2O3 nanocomposite coatings were synthesized from aqueous sulphate-citrate electrolyte containing Cr2O3 nanoparticles on a steel surface using conventional electrodeposition technique. This study was aimed at investigating the influence of Cr2O3 nanoparticle content on the microstructure, corrosion resistance, and mechanical properties of electrodeposited Ni–W/Cr2O3 nanocomposite coatings. Ni–W binary alloy coatings were deposited and optimized before addition of the nanoparticles to produce high-quality coatings. The microstructure and chemical composition of the Ni–W/Cr2O3 nanocomposite coatings were evaluated using scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS), and XRD. Corrosion resistance properties were evaluated using potentiodynamic polarization (Tafel) measurements in 3.5 wt.% NaCl medium. The corrosion resistance and microhardness are significantly higher in Ni–W/Cr2O3 nanocomposite coatings compared to pure Ni–W binary alloy and increase with the increase in content of Cr2O3 nanoparticles in the coatings. Wear resistance is also higher in Ni–W/Cr2O3 nanocomposite coatings.