In this study, grit blasting pretreatment was used to improve the adhesion and corrosion resistance and microhardness of Ni-W/SiC nanocomposite coatings fabricated using conventional electrodeposition technique. Prior to deposition, grit blasting and polishing (more commonly used) pretreatment were used to prepare the surface of the substrate and the 3D morphology of the pretreated substrates was characterized using laser scanning confocal microscopy. The coatings surface and the cross section morphology were analyzed using scanning electron microscopy (SEM). The chemical composition, crystalline structure, microhardness, adhesion, and the corrosion behavior of the deposited coatings were characterized using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), microhardness tester, scratch tester and electrochemical workstation, respectively. The results indicated that the grit blasting and SiC addition, improved the microhardness, adhesion and corrosion resistance. The Ni-W-SiC nanocomposites pretreated by grit blasting exhibited the best adhesion strength, up to 36.5 ± 0.75 N. Its hardness was the highest and increased up to 673 ± 5.47Hv and its corrosion resistance was the highest compared to the one pretreated by polishing.