Second harmonic generation (SHG), electrochemical quartz microbalance (EQCM), and cyclic voltammetry are applied to clarify the structure and properties of Cu adlayers formed in the presence of Keggin polytungstate anions. For 0.02-10 mM CuSO4 solutions, no pronounced suppression of underpotential copper deposition (Cu UPD) by 0.1-10 mM H3PW12O40 (PW12) or H4SiW12O40 (SiW12) is observed in electrochemical experiments. Moreover, coadsorption with polyanions results in an increase of charge in the Cu UPD region. EQCM data demonstrate high surface coverage with polytungstate in the overall potential range and their pronounced co-adsorption with Cu2+ cations under open circuit. The unusual potential dependence of EQCM response of polytungstates is discovered and discussed in terms of anion interactions with adsorbed hydrogen. The SHG response of Cu UPD demonstrates a non-linear dependence on Cu surface coverage, which is interpreted in terms of discontinuous submonolayers consisting of 2D Cu islands. The additives of PW12 or SiW12 decrease copper SHG response at low and high CuSO4 concentrations, with minor effect for a mid range of concentrations. In all mixed solutions, the potential dependence of the SHG response remains typical for Cu UPD, not for polytungstates. SHG transients measured under potential step mode demonstrate that the initial non-steady-state SHG behavior of the adlayer is more close to the behavior of polytungstates, but typical copper features appear at longer wavelength. These facts favor the hypothesis of Cu adatom penetration through anionic adlayers and formation of a metal submonolayer at the vacant areas between large quasi-spherical polyanions, with subsequent transformation into a Pt/Cu/polytungstate layered structure.