The traditional subtractive process to fabricate conductive patterns is environmentally harmful, wasteful, and limited in line width. The additive process, including direct printing of conductive paste or ink, direct printing of catalytic ink, laser-induced forward transfer, etc., can solve these problems. However, the current additive process also faces many difficulties such as low electrical and adhesion properties, low pattern thickness, high cost, etc. Benzotriazole (BTA), as widely used corrosion inhibitor, can be adsorbed onto a copper surface. The electroplated copper film on BTA-adsorbed copper foil shows poor adhesion. On the basis of this phenomenon, a novel template transfer process to additively fabricate conductive patterns has been developed. A permeant antiadhesive mask is printed on carrier copper foil, and then, BTA is adsorbed onto the exposed area of the carrier foil, thus forming the template. The template is electroplated to grow conductive patterns in the exposed parts, and then can be adhered to the flexible substrate. The substrate is peeled off, with the transfer of the conductive patterns to the substrate, to form the designed conductive patterns on PET. By reimmersing the template into BTA solution, the template can be used again. The mechanism of BTA adsorption and the reason for the low peeling strength are researched using Raman spectra, XPS and electrochemical impedance spectroscopy. Copper patterns more than 20 μm in thickness can be prepared on PET, the resistivity of the prepared copper patterns is 2.01 μΩ cm, which is about the same as bulk copper, and the peeling strength of the pattern on PET is measured to be 6.97 N/cm. This template transfer process, with no waste, low pollution, high electrical and adhesion properties, and low cost, shows high potential in the large scale manufacturing of electronic devices, such as RFID circuitry, FPCs, etc.