Peripheral nerve injuries are one of the most common types of traumatic damage to the nervous system. Treatment of peripheral nerve injuries aims to promote axon regrowth by imitating and improving the microenvironment for sciatic nerve regeneration. In this study, regeneration efficiency and behavior of peripheral nerves are compared under three treatment strategies: 1) transplantation of Schwann cell progenitors induced from purified neural crest stem cells; 2) implantation of a multiscale scaffold based on high‐resolution 3D printing; and 3) implantation of this bionic scaffold loading Schwann cell progenitors. The results of structural, electrophysiological, and behavioral tests demonstrate that the three treatment strategies result in different degrees of regeneration. The purified neural crest stem cells differentiate into functional Schwann cells and promote axon regeneration. The multifunctional 3D printed scaffold promotes oriented growth and myelination, and the myelinated nerve regrows with increased density and without visible scaffolds after six months. For the regeneration, scaffold treatment produces better performance than cell graft alone. Finally, it is shown that implantation of multiscale scaffolds preloaded with neural crest stem cell derived Schwann cell progenitors is the best strategy to promote peripheral nerve regeneration with improved anatomy and function among the three different strategies.