Abstract:We discuss the constraints that a conformal field theory should enjoy to admit exactly marginal deformations, i.e. to be part of a conformal manifold. In particular, using tools from conformal perturbation theory, we derive a sum rule from which one can extract restrictions on the spectrum of low spin operators and on the behavior of OPE coefficients involving nearly marginal operators. We then focus on conformal field theories admitting a gravity dual description, and as such a large-N expansion. We discuss the relation between conformal perturbation theory and loop expansion in the bulk, and show how such connection could help in the search for conformal manifolds beyond the planar limit. Our results do not rely on supersymmetry, and therefore apply also outside the realm of superconformal field theories.