2016 2nd International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering (ICIMECE) 2016
DOI: 10.1109/icimece.2016.7910421
|View full text |Cite
|
Sign up to set email alerts
|

Electromyography (EMG) signal recognition using combined discrete wavelet transform based on Artificial Neural Network (ANN)

Abstract: Rapid disability patients increasing over time and need a solution in the future. Hand amputation is one form of disability that common in Indonesian society. A possible solution would be necessary at the moment is the development of prosthetic hand that has the ability as a human hand. The development of neuroscience has now reached the stage of the body's ability to use the signal as an input signal to operate a system. One of the applications of the science development is the use of electromyography (EMG) s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
1
0
3

Year Published

2018
2018
2024
2024

Publication Types

Select...
3
3
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(4 citation statements)
references
References 8 publications
0
1
0
3
Order By: Relevance
“…Several methods for classification of EMG features have been reported. Empirical mode decomposition of EMG has been used to classify upper limb movements [18], while techniques based on discrete wavelet transforms of EMG have identified muscle movements [19][20][21].…”
Section: Discussionmentioning
confidence: 99%
“…Several methods for classification of EMG features have been reported. Empirical mode decomposition of EMG has been used to classify upper limb movements [18], while techniques based on discrete wavelet transforms of EMG have identified muscle movements [19][20][21].…”
Section: Discussionmentioning
confidence: 99%
“…Çalışmada, 18-30 yaş arası 8 katılımcıdan elde edilen 303 EMG verisi kullanılarak dalgacık paket dönüşüm (DPD) yöntemi ile öznitelik çıkarımı gerçekleştirilmiştir. Arozi vd., EMG sinyallerinde hareket tespitini hedeflemişlerdir [11]. Bu hedefle alınan 8 farklı harekete ait EMG sinyallerine ADD uygulanmış ve buradan gelen katsayılara bazı istatistiksel yöntemler uygulanarak öznitelik belirlenmiştir.…”
Section: Introductionunclassified
“…Yapılan çalışma sonrasında sistemin doğruluk oranı %83 olarak belirlenmiştir. [7] nolu çalışmada EMG sinyallerinde hareket tespiti amaçlanmıştır bu amaçla alınan 8 farklı harekete ait EMG sinyallerine ADD uygulanmıştır ve buradan gelen katsayılara bazı istatistiksel metotlar uygulanarak öznitelik çıkarılmıştır. Çıkarılan bu verilerin Yapay Sinir Ağı (YSA) ile sınıflandırılmıştır.…”
Section: Introductionunclassified